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Abstract-A cold, thin film of liquid impinging on an isothermal hot, horizontal surface is modelled as a 
two-dimensional jet of prescribed uniform velocity, film thickness and temperature. An approximate 
solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, 
which exploits the Watson hydrodynamic similarity solution for thin film flow. A numerical solution of 
high accuracy has also been obtained. Comparisons indicate that the approximate solution may provide a 
valuable basis for assessing flow and heat transfer in more complex settings modelled by jet impingement 

such as cylinder inundation flows. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

In response to the abundance of practical applications 
the heat transfer associated with impinging jets has 
been the subject of numerous theoretical and exper- 
imental research studies reported in the literature. In 
particular the heat transfer effected by the steady flow 
of a circular free jet against plane surfaces has been 
discussed by a number of authors [l-6]. The seminal 
paper by Watson [7] on the radial spread of a liquid 
jet over a horizontal plane has frequently been instru- 
mental in framing the hydrodynamic background to 
such studies. In the same paper, Watson also presents 
a discussion of the flow field associated with a vertical 
two-dimensional jet striking a horizontal surface. Its 
relevance to practical circumstances is not quite as 
immediately obvious. However, the inundation and 
drainage film flow between vertically adjacent hori- 
zontal cylinders has long been recognized as an impor- 
tant element in the heat exchange process as utilized 
in a variety of industrial settings. This is particularly 
true in the context of condensers, as used in power 
generation. Here the draining fluid is accumulated 
condensate. The assessment of heat transfer charac- 
teristics in such settings is based on Nusselt theory. 
Unfortunately the absence of inertia in the theory 
leads to the prediction of zero heat transfer at the 
upper generator of an inundated cylinder. The work 
that follows in part addresses this inconsistency. If 

t Author to whom correspondence should be addressed. 

the inundating film is modelled as an impinging two- 
dimensional jet it is noteworthy that Watson’s work 
on the plane jet may be exploited to advantage in these 
circumstances also, particularly if the film thickness 
to cylinder radius ratio is small. For then, on a length 
scale typical of the width of the draining film the 
cylinder surface at impingement may be regarded as 
locally flat. Accordingly, further insight into the flow 
and heat transfer characteristics near the top of an 
inundated cylinder may usefully be obtained by exam- 
ining in the first instance the heat transfer features of 
the two dimensional jet flow against a plane, hori- 
zontal surface. Moreover, any underlying meth- 
odology of solution may indicate how best to incor- 
porate inertia into a detailed assessment of the heat 
transfer characteristics of inundation and drainage 
flow over a cylinder. Current analyses of such flows 
[8-l l] fail to distinguish between the effects of a thin, 
high speed jet as compared to a thick, low speed jet 
when each give rise to a common flow rate. By dem- 
onstrating that the heat transfer from an inundated 
cylinder is dependent upon the spacing between ver- 
tically adjacent tubes, Mitrovic [ 121 indicates that such 
a distinguishing capability in theoretical models is 
called for. Some progress has been made in the hyd- 
rodynamic context. Depending upon the precise 
impingement conditions a variety of film thickness 
profiles associated with a common flow rate has been 
demonstrated in Abdelghaffer ef al. [13]. 

In the work that follows, it is once again indicated 
how Watson’s hydrodynamic theory can be exploited 
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NOMENCLATURE 

c’, specific heat 
(,f; U. 13, $,rr) dependent variables 
fil, f$,, initial profiles 
H, h film thicknesses 

& jet semi-thickness 
k thermal conductivity 
I leading edge shift constant 
NM Nusselt number 
Pr Prandtl number 

Q (/of47 
Y heat flux 
Rr Reynolds number 
T temperature 

T, jet temperature 
T\\ plate temperature 
L’ 0 jet velocity 
U free surface velocity I) 
V = (Cl, I/) velocity and its components 
(X, I’), (.Y, y) Cartesian coordinates measured 

along and normal to the plate 
s,,. s, ends of Regions 1 and 2. 

Greek symbols 

/I dimensionless free surface temperature 
I- Gamma function 
A srjs 
6. b 7 dimensionless boundary layer 

thicknesses of velocity and 
temperature variations 

‘1 I rllA 
Ii thermometric conductivity 
p. 1 dynamic and kinematic viscosities 
(<. II) dimensionless coordinates 

/’ density 
skin friction 

; stream function. 

Subscripts 
wt Watson. 

Superscript 
dimensional analysis. 

to great advantage in the heat transfer analysis of the -!!!? 
film cooling accompanying the spread of a cold, two- I 
dimensional jet against a hot, horizontal plate. An I 
approximate solution scheme is developed which To I 

incorporates the idealized notions of viscous and ther- 
p 
I 

ma1 penetration of the free surface, before down- I 
I 

stream asymptotic similarity solutions apply. A I 
judicious combination of momentum integral and 
similarity methods provides comprehensive estimates 

i 
I 

UO 

of the impingement flow and heat transfer charac- 
teristics. To assess the viability of the solution scheme. 
as a prelude to cylinder inundation analysis, a full 
numerical solution is also obtained. A high level of 
agreement between the two solutions is demonstrated. 

2. MODELLING AND BASIS OF APPROXIMATE 

SOLUTION r.. . r, . r . . . . rrg. I. r-row cnaracrerrsncs ot a two-armensronal verucal 
The problem to be examined concerns the film coo- jet striking a horizontal flat plate : (i) embedded stagnation 

ling which occurs when a cold vertically draining sheet boundary layer, (ii) outer inviscid deflection region, (iii) 

strikes a hot horizontal plate. Although a sheet of quasi Blasius viscous diffusion, (iv) transition around viscous 
penetration, (v) similarity film flow. 

fluid draining under gravity will accelerate and thin. 
at impact it is reasonable to model the associated 
volume flow as a jet of uniform velocity co and semi- 
thickness Ho, as illustrated in Fig. 1. The notation 
Q = U, H,, is introduced for the flow rate and a film 
Reynolds number may be defined as Rr = Q/v, where 
v is the kinematic viscosity of the fluid. The underlying 
hydrodynamics of the fluid flow may be inferred from 
Watson [7], who was principally concerned with the 
radial spread of an axi-symmetric liquid jet over a 
horizontal plane. 

(i) 

(ii) 

(iii) 

They may be summarized as : 

a deeply imbedded stagnation boundary layer 
of thickness O(vH,/U,)“‘; 
an outer viscid deflection region of O(H,). in 
which fluid rapidly accelerates from the value 
zero on the axis of symmetry to the free stream 
value 0( U,) ; 
a Blasius region at distances greater than 
O(H,) from the axis of symmetry in which 
a boundary layer develops against the plane, 
effectively within a uniform stream ; 
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(iv) a transition region in which viscous effects pen- 
etrate the free surface and reduce its velocity; 

(v) a region well away from the axis of symmetry 
where similarity solutions for the developing 
film thickness, the free surface velocity and the 
velocity distribution can be found. 

Watson also recognized the eventual termination of 
the flow regime by a hydraulic jump. Since the objec- 
tive here is ultimately to develop a methodology for 
the flow around a cylinder where no such phenomenon 
is observed, the associated complications of a possible 
hydraulic jump will not be considered. 

The temperature condition within which heat trans- 
fer estimates will be obtained assumes a constant tem- 
perature T, at the plane and zero heat flux at the free 
surface. If water is the coolant medium then it has to 
be noted that the rates of viscous and thermal diffusion 
will be appreciably different. The rate of viscous 
diffusion will exceed that of temperature diffusion. 
The point at which viscous effects penetrate the free 
surface will therefore occur before the point at which 
the free surface first experiences the presence of the 
hot plane. This physical appraisal of the developing 
flow field provides the framework for the initial 
approximate method of solution. Schematically the 
flow may be represented as in Fig. 2 and divided into 
the following regions. 

Region 1 
In this region the impinging jet essentially experi- 

ences an inviscid symmetric division and deflection 
through 90”. For high flow rates the deeply imbedded 
stagnation boundary layer is O(VZ~,/U,)“~, i.e. 
O(H,,Re-I”) and as a first approximation or in the 
limit of large Re may be regarded as negligibly small. 
A viscous boundary layer develops against the hori- 
zontal plate within the deflected jet and eventually 
penetrates the free surface marking the end of Region 
1. A thermal boundary layer develops simultaneously, 
but for Prandtl numbers greater than unity this will 
still be evolving at the end of Region 1. 

. 
Y 

Region 2 
A judicious choice of approximating profiles in 

Region 1 is designed to approximate immediate tran- 
sition to the film similarity solution at the onset of 
Region 2. Consequently Region 2 is examined under 
the assumption that the full hydrodynamic similarity 
solution is applicable. The adjustment of the tem- 
perature field as thermal effects develop and penetrate 
the free surface within this hydrodynamic setting is 
monitored. The end of Region 2 is notionally reached 
when the presence of the hot wall is first detected at 
the free surface. 

Region 3 
In the film cooling setting, when there is zero heat 

flux at the free surface, the film will eventually reach 
a uniform temperature distribution, coinciding with 
the temperature of the wall. Again within the estab- 
lished hydrodynamics, Region 3 covers the evolution 
towards this asymptotic state once the wall tem- 
perature effects penetrate the free surface. 

3. GOVERNING EQUATIONS 

The flow under investigation has been modelled 
as a steady, two-dimensional flow of incompressible 
fluid. In the absence of body forces external pressure 
gradients and viscous dissipation the equations 
expressing conservation of mass, momentum and 
energy are consequently 

v-v = 0 (1) 

p(V*V)V = @v (2) 

pC,(V.V)T = kV2T. (3) 

In the specified physical setting, the equations are 
to be solved subject to the following conditions : 

U=V=O T=T, onY=O,X>O (4) 

I 
I 
I 

To I 
I 

UO 
I 

Ho 
___c 

Region 1 
Viscous diffusion 

Region 2 Region 3 
Thermal diffusion Evolution to similar profiles 

Fig. 2. Basis of approximate solution. 
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Fc’ : 

;Ir=o go at Y=H(X),X~@ (5) 

J‘ 
H(X) 

U/(X, Y) d Y = constant = H,, U,, for X 2 0. 
0 

(6) 

On the assumption that the film thickness remains 
thin relative to a characteristic horizontal dimension, 
a boundary layer treatment of the equations leads to 
significant simplification. 

The following nondimensional variables are intro- 
duced 

x 
-y = ReH, u = ; 

H(X) 
I, 

l(x) = 7 

0 

(7) 

In the limit Rr + + 2. with x remaining O(l), the 
following equations are obtained : 

where Pr = V/K is the Prandtl number. 
The boundary conditions now read 

i 

/Y( , ) 

ody= I forx30. (13) 
0 

These have been quoted in the context of the fully 
developed film flow field which is approached in 
Region 3. Equations (8) and (9), under the hyd- 
rodynamic boundary conditions, have been shown 
by Watson [7] to possess similar solutions. A simple 
supplementary thermal solution of uniform tem- 
perature is also present. These solutions provide the 
basis for developing comprehensive approximate solu- 
tions for the complete flowfield downstream of the 
symmetry point of impingement incorporating 
Regions 1, 2 and 3. 

4. DOWNSTREAM SIMILARITY SOLUTIONS 

Introducing a similarity variable q = ?/h(x), 
a stream function form of solution 
$(s,_v) = C7~(x)&),f(~) leads to the Watson similarity 
solution as the solution of 

2f”‘$-3e1.f“? = 0 ,f”(O) = 0 J’(l) = 1 f’(1) = 0. 

(14) 

Here ub(.u) represents the nondimensional 
unknown velocity at the free surface and c can be 
obtained analytically as 

U$($ 
5 z 1.402. 

3T(,) 

Together with the numerical solution of equation (14), 
the hydrodynamics are fully determined by the results 

Here I is a nondimensional shift constant reflecting 
that the solutions hold at large distances from the jet 
incidence. In due course I may be estimated by further 
consideration of the boundary layer growth from the 
point of impact of the jet. 

With $(.u,~) = 6(n) it is readily shown that 4 sat- 
isfies 

C#? = 0 6(O) = Q?(l) = 0. (16) 

Thus, as anticipated, the asymptotic downstream 
solution for the temperature distribution is just 
4(q) = 0. i.e. the temperature T, ultimately persists 
throughout the film if ~?r/?r = 0 at the free surface. 

5. APPROXIMATE SOLUTIONS 

An approximate solution scheme is now presented 
which examines closely the flow at impingement. The 
solution is built up from this vicinity, stage by stage. 
to provide comprehensive details of the velocity and 
temperature distribution along the entire plate. 

At impact, an inviscid deflection of the draining 
sheet occurs over a negligibly small length scale. 
Essentially the flow along the plane in this region is 
modelled as a horizontal film of uniform velocity C’,, 
arriving at the leading edge X = 0 of a semi-infinite 
flat plate. Only after deflection will the flow be aware 
of the presence of the solid boundary, and only then 
will viscous effects begin to influence the flow field. 
The development of a viscous boundary layer within 
a uniform velocity film indicates a close parallel in this 
region with the Blasius boundary layer flow. Similarly 
the temperature differential between the plane and 
the fluid will only begin to influence the temperature 
distribution after deflection. Thus, a developing ther- 
mal boundary layer may also be anticipated from 
x= 0. 

The equations governing the viscous and thermal 
boundary layers are exactly the same as equations (8)) 
(lo), but the boundary conditions now read 
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as y approaches the outer limits of the viscous and 6(r) 

thermal boundary layers respectively s Ody-(I&6) = 1 (22) 
0 

O= l,&= 1 atx=O,y>O. where 

The transformations 
(23) 

$(.%.Y) =(2x)“*j’(q)> Q(%Y) = &rf)> ‘f = & 

h(x) = l+(l-&)6. 

Since 6(x,) = L 

(17) x 
II 

= 3&(7+-4) 
4n2 

z 0.13162 (24) 
lead to 

f”+fT = 0 f(0) =7(O) = 0 T($ + 1 and matching the free surface velocity at x = x0 leads 
to 

asq-* +co 

;; p +.f@ = 0, 

, = v?c 4nZ (3&c- ?I) z 0.7646. (25) 
@J(O) = 0 f&j) + 1 

Notice that as a result of the choice of approxi- 
asrf+ +co. (18) mating profile the velocity distribution at the end of 

These equations, as anticipated, are the well docu- 
Region 1 exactly matches that of Region 2. 

mented forced convection boundary layer equations. 
Their solutions for Pr > 1 indicate that the length 

5.2. Alternative profiles 

scale of thermal diffusion can be significantly less than 
Although the Watson profile may be thought to be 

that of viscous diffusion. 
the most effective in suppressing the transition region, 

Viscous effects, in due course, must penetrate the 
any convenient profile may be used in the momentum 

free surface and the transition region of Fig. 1 is essen- 
integral equation. When considering the heat transfer 

tially a region of adjustment from the Blasius profile 
characteristics of the flow by means of the energy 

to the Watson similarity profile. As the profiles are 
integral equation, the use off’(q), which is only known 

not greatly dissimilar, a device which in effect com- 
as a numerical solution, is unwieldy. A polynomial 

presses the transition region to a single point is intro- 
approximation to the velocity profile is more 

duced. An approximate velocity profile 
convenient. 

To maintain the aggregate and matching properties 

O(x,,v) = Os(x)fl 5 
0 

> ? = & 
of f’(q), and simultaneously exploit the convenience 

(19) of a polynomial representation, a fourth-order poly- 
nomial approximation tof’(q) has been obtained as 

is assumed, wheref’(q) is the original Watson simi- 
larity profile and 6(x) is the nondimensional boundary 

f&(q) = c~+(4-3~)~~+(2~-3)$, (26) 

layer thickness. The profile is then used in a K&rmBn- where c is the constant 1.402. A remarkably close 

Pohlhausen method of solution. Over Region 1 unre- comparison between the polynomial profile and the 

tarded fluid is present when x < x0, say where x,, similarity solution is illustrated in Fig. 3. For com- 

marks the point of penetration of viscous effects at parison note that 

the free surface, so that us(x) = 1 and 6(x) < I?(x) 
over 0 < x < x,,. For x > x0 into Region 2 6(x) = K(x) 
and Us(x) < 1 in a manner which, using the con- 
servation of flow constraint, can be matched directly 
onto the asymptotic similarity solutions. 

The momentum integral equation reads 

d a(r) _ _ 

dx, s 
(20) 

and using equation (19) leads to the solution 

3&3x 
62(x) = ___ (21) 

n-c 3 d-’ 

where 6(x) = 0 has been assumed at x = 0, which is 0 0.2 0.4 0.6 0.8 I 

valid in the limit of the underlying assumption. 11 

Invoking the conservation of volume flow at x0, the Fig. 3. Comparison of the Watson similarity solution and 
end point of Region 1 leads to the Watson approximating polynomial. 
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.f’Xr?) dvl 
8 + 3C 

= 2. = 0.6103 

The viscous boundary layer thickness for this profile 
is given by 

6; = 
1260~s 

72+39c- l9C? 
(28) 

and 

20(72+39(,-19~‘) ~ o,13577 
.Yi,* = ---- 

63~(8 + 3~)’ 
(29) 

, = 567c’(8+3c)‘-40+(72+39c- 19~‘) 
w ~ --- z 0.7604 

126tr’c(8+3~)~ 

(30) 

which very closely approximate equations (24) and 
(25). The polynomial ,fd(s) is consequently used in 
subsequent developments of the velocity and tem- 
perature distributions. 

It remains to establish the temperature chardc- 
teristics in Region 1. The energy integral equation of 
(10) becomes 

(31) 

where 6,(x) denotes the outer limits of the region 
of thermal diffusion. For Pr > 1, C&(.X) < S(X) over 
0 < x < x,,. The notation qr = 1/6,(.x) is introduced 
and the ratio b7/6 is denoted by A so that rl = Aqr. 
The solution for 6,(x) is again developed by assuming 
profiles for 0 and (i; as 

O(rl) =/L,(e) Q;(E) =J:(qr) (32) 

which ensures identical velocity and temperature dis- 
tributions for Pr = I when also A = I. 

Assuming a constant ratio A leads to 

A’D(A) = 
4(72 + 39~,- 19~,‘) 

Pr - 
(33) 

where D(A) = 168~(3-c)A+27(4-3~)(5-2c)A’-7 
(3-2~)(12-5~,)A.“. 

The values of A, obtained for various Prandtl num- 
bers. are listed in Table 1. 

5.3. Region 2 
In Region 2, the hydrodynamics are governed by 

the Watson similarity solution where thermal 
diffusion continues to progress across the film. 
Accordingly the velocity at the free surface is no longer 
uniform, but is prescribed in nondimensional terms 
by equation (15). The film thickness L(X) and the 
viscous boundary layer thickness 6(x) now coincide 
as 

Table I. Values of A obtained 
from equation (33) 

PI A 

I.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

I .oooo 
0.7878 
0.6863 
0.6227 
0.5775 
0.5431 
0.5157 
0.493 1 
0.4740 
0.4575 

b(x) = L(x) = ++l,j. (34) 
v 

The energy integral equation (31) remains appro- 
priate. The presence of the free surface limits further 
viscous penetration and C?,(X) -+ C?(X) = &). In pre- 
scribing profiles n7 = _r/b,(x) may again be utilized, 
but now A(x) = &(x)/S(x) is no longer constant, and 
must in fact tend to I at the end of Region 2. 

The following profiles are introduced into the 
energy equation : 

fli(K VI = ~bwL(r?) 6t.c VT) =.f:,h). (35) 

The equation for 6,(x) is accordingly 

This resultant first-order equation in A’ may now 
be integrated with initial data A(x,,~; Pr) as far as 
A(.u,,(Pr) ; Pr) = 1 to give 

A’[336Oc(3-c)+648(4-3c)(5-2c)A’ 

-l75(3-2c)(12-5c)Ai] 

(37) 

.Y,_ marks the end of Region 2, as predicted, using 
the Watson polynomial profile. Beyond .x,,_, viscous 
and thermal effects are present throughout the film. 

The values of x,,(Pr) are listed in Table 2. The 
numerical details for various Pr are presented in Table 3. 

The boundary condition of zero heat flux at the 
edge of the developing thermal layer in Region I and 
Region 2 is based on the assumption of a continuous 
temperature distribution developing smoothly into 
the impinging jet temperature. Once the temperature 
effects of the hot wall penetrate the free surface beyond 
x,,(Pr) the zero heat flux boundary condition remains 
appropriate. Here, however, it reflects the insulating 
role of the surrounding air. As a consequence, the 
temperature of the film will now rise as a result of 
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Table 2. The values of x,,(Pr) 
for various Prandtl numbers 

Pr xdPr) 

1.0 0.1358 
2.0 0.3292 
3.0 0.5654 
4.0 0.8528 
5.0 1.2030 
6.0 1.6291 
7.0 2.1476 
8.0 2.7787 
9.0 3.5468 

10.0 4.4821 

continuing heat input at the plate. In fact the tem- 
perature of the film will now progress to T,, so long 
as the insulating boundary condition is maintained. 

To accommodate the adjustment of the film tem- 
perature to T,.,, the following profiles are adopted 

0(x> ‘I) = %)Mv) 6(x, rl) = &)fL(?) (38) 

where now r) = y/&x). 
The energy integral equation now reads 

d 

-5 

L(X) 

dx o 
W-6) dy- 

(39) 

The result is an equation for /3(x) within the frame- 
work of prescribed film thickness, namely 

72+369~~19c’~(C?,h;R)_~C,~~=ra 

(40) 

and hence, 

(41) 

which satisfies the requirements /l(x,,(Pr)) = 1 and 
has p -+ 0 at rates dependent on Pr. 

Table 3. Numerical results for A(x) in Region 2 for various 
Prandtl numbers 

____ 
X-X&+ 

___ 
x1r -xo\u 
____ 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

A(x)Pr = 2 Pr = 5 Pr= 10 

0.7878 0.5775 0.4575 
0.8161 0.6725 0.6623 
0.8421 0.7403 0.7562 
0.8663 0.793 1 0.8166 
0.8888 0.8364 0.8606 
0.9100 0.8729 0.8949 
0.9300 0.9046 0.9229 
0.9488 0.9324 0.9464 
0.9667 0.9573 0.9666 
0.9838 0.9796 0.9843 
1 .oooo 1 .oooo 1 .oooo 

6. APPROXIMATE SOLUTION RESULTS 

The approximate solution scheme outlined provides 
comprehensive details of the flow and heat transfer 
characteristics for the model flow. Estimates of film 
thickness, velocity and temperature distributions, skin 
friction and heat transfer coefficients over the entire 
region downstream of the point of impingement can 
be obtained. 

A more detailed indication of the region by a region 
form of solution appears in Fig. 4. For Prandtl num- 
bers Pr = 2, 5 and 10 film thickness profiles incor- 
porating the viscous and thermal diffusion processes 
to penetration are presented. 

The elements of interest in engineering practice are 
the shear stress at the solid boundary, i.e. the skin 
friction and the rate of heat transfer at the boundary. 
The skin friction is defined as 

au - 
’ =p ay ( > y=. (42) 

leading to the nondimensional skin friction coefficient 

(43) 

The approximate solutions give 

9&3 

= 27c3(x+lJX 
in Regions 2 and 3. (4) 

T(X) is plotted in Fig. 5. The integrable square root 
singularity is consistent with the Blasius boundary 
layer equivalent. 

The most significant film cooling design factor is 
the heat transfer across the film. The heat transfer at 
the solid boundary is given by 

where AT = T,- T,,. The nondimensional version is 
the Nusselt number defined as 

(46) 

The results are 

h$,,=&/vinRegionl 

1 
$’ in Region 2 

= A,(x; Pr) n(x+Z,) 

in Region 3. (47) 
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2.5 

01 
I I I I I 

0 0.2 0.4 0.6 0.8 I 

x 

6r 

5 - (b)Pr=5 

4- 

I 

0 0.5 1 1.5 2 
x 

(a) Pr= 10 

12 r 
10 - 

8 - 

6 - 

0 I 2 3 4 5 
I 

Fig. 4. Film, viscous and thermal boundary layer thicknesses 
using the profi1e.f:. 

The predictions of Nu, for a range of Prandtl num- 
bers are presented in Fig. 6. The values of AW(Pr) have 
been obtained from equation (33) and A,(x ; Pr) is the 
solution of equation (37). 

7. NUMERICAL SOLUTION 

The approximate solution so far developed is based 
on a qualitative appraisal of the anticipated hyd- 
rodynamic and thermal features of the jet flow. 

4 

3 

i(x) 2 

I 

0 
0 0.2 0.4 0.6 0.8 I 

x 

Fig. 5. Approximate solution estimate of skin friction. 

0 
I I I 

0 0.5 I 1.5 

x 

Fig. 6. Approximate solution estimates of heat transfer 
coefficient for various Prandtl numbers. 

However, there is no means of assessing the validity 
or accuracy of the solution other than by direct 
numerical solution of the overall differential system. 
Such an assessment is essential if the methodology is 
to be carried over with confidence into more complex 
settings, such as cylinder inundation. 

The numerical problem is the solution of the system 

subject to the boundary conditions 

a* 
ti=O -=0 qT=O on)%=0 x30 

ay 

(50) 
(7’11, a4 

ti=l -=O -=0 aty=Q(x) ~20 C?.V2 a.V 

(51) 

L=l I/?=_v $=l atx=O O<J’<~, 

(52) 

where equation (52) is the essential initial condition 
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for the parabolic system reflecting conditions at jet 
deflection. 

The solution algorithm is a development of that of 
Hunt [14], who considered the numerical solution of 
parabolic free boundary problems for isothermal thin 
film flows. In anticipation of the use of a Keller box 
method and its attractive extrapolation features, the 
differential system is re-cast as the following first- 
order system : 

a* aa au aii -_=-j -_=fj _w 
ay -=“x-% (53) 

a$ -_=w 
ay 

a;=P;&C$%J (54) 

whose boundary conditions are 

*=O n=O $=O ony=O O<x<+co 

*=1 a=0 vV=O ony=L(x),O<x< +cc 

L=l $=y &=l onx=O O<y<l. (55) 

Hunt ingeniously introduces the following coordinate 
transformation that simultaneously maps the film 
thickness onto the unit interval and removes the 
Blasius singularity at the origin : 

In the spirit of the continuous transformation algo- 
rithm of Hunt and Wilks [ 151, these are supplemented 
by transformations of the dependent variables which 
incorporate the growth rates of their asymptotic 
behaviour as known from the downstream similarity 
solutions. As a result, all dependent variable remain 
of order unity over all l. The appropriate trans- 
formations are 

Il/kY) = &fm) W>Y) = z 
W,Y) = s 45, ah &%Y) = 4453 VI 

@(X,Y) = 5(1 +<)= 
5+1_rl w(& q) h-(x) = (1 -t 5)‘h(5). 

(57) 

The equations to be solved now read 

(58) 

(59) 

f = (1fOhu s ~_ 
v 5+1--q 5+1-o 

(l+Ohu 
nfJ = 4_tl-)? 

V [(l +t)=hu= (l---9)(1 +03hfi 

” =FG- (<+l-$3 - 2(5+1-~)4 

+ 5(1+5)3h (uu -v&t) 
2(5+1-q)’ 5 

W Pr(1 -$(l +tYhfw 
wv=m- 

2(5+1-vY 

+ mu + 03h 

2(5+1-1)3 
We - wfc) 

subject to 

f=O u=O $=O onl=O O<l+cc 

(61) 

(62) 

f=l v=O w=O onq=l O<t<+cr! 

h=l f=fo(~) d=&(q) at5=0 O<r?<l, 
(63) 

wheref,(q), &,(q) are found by putting 4 = 0, h = 1 
into equations (58)-(62) and solving, subject to con- 
ditionsf=u=$=O at q=O and u= 1, Q,= 1 at 
‘1 = 1. 

The parabolic system of equations and boundary 
conditions (58)-(63) has been solved by marching in 
the e-direction using a modification of the Keller box 
method. A nonuniform grid is placed on the domain 
5 > 0, 0 < q < 1, and the resulting difference equa- 
tions are solved by Newton iteration. Solutions are 
obtained on different sized grids and Richardson’s 
extrapolation used to produce results of high accu- 
racy. A full account of the numerical method and the 
details of implementation is beyond the scope of this 
paper and will be reported separately. The solution 
scheme was successfully tested against previously 
reported results. 

8. NUMERICAL RESULTS AND COMPARISONS 

A typical run had a coarse grid of dimension 60 x 48 
on the (5, q) domain with each cell being divided into 
1, 2, 3 and 4 sub-cells, respectively. Because of the 
coordinate singularity at 4 = 0, q = 1 a nonuniform 
grid was employed given by 5 = l/3 sinh [t’.5( 1 + f ’ ‘)I, 
u = 1 - (1 -r~)‘.‘, where g and ij are uniform. When 
AZ = 0.044618955 and Aij = l/47, this gave 
At - 0.004 and Al N 0.003 near the singularity, 
which is sufficiently small to give good accuracy, and 
this enabled us to integrate as far as 5 - 109, which 
was necessary for the profile at infinity to be deter- 
mined with sufficient accuracy. From the convergence 
of the extrapolation process the absolute error is 
3 x lo-‘. A typical set of numerical data is presented 
in Table 4. 

In Fig. 7, the film thickness profiles obtained from 
both the numerical and approximate solutions are 
compared and in Fig. 8 the comparison is repeated 
for free surface velocities. In each case there is good 
agreement between the respective solutions for these 
aggregate hydrodynamic properties. Figure 9 presents 
a comparison of predicted velocity profiles at various 
downstream stations. An excellent agreement in 
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Table 4. Film thickness, free surface velocity and temperature for the two-dimensional flat plate with Pr = 2 

Film Free surface Free surface 
thickness velocity temperature 

Y !Y( X) r-&Y, /Y(X)) $(x3 K(x)) 
~~~~ -____ _-- 

0.000 I .ooo 1.000 1 .oOo 
1.171 X lo- 2 1.186 1.000 1.000 
5.151 X 10 -? 1.391 0.998 1.000 
0.197 1.768 0.904 0.987 
0.567 2.458 0.661 0.878 
1.233 3.667 0.443 0.724 
1.874 4.830 0.337 0.63 1 
4.650 9.864 0.165 0.441 

12.853 24.145 6.571 x 10 ’ 0.278 
40.118 74.199 2.191 X 10~ 2 0.160 

1.429 x 10’ 2.607 x 10’ 6.238 x 10 ’ 8.517x 10 z 
5.866 x IO2 1.065 x 10’ 1.526x 10~’ 4.204 x IO-’ 
2.798 x 10’ 5.077 X 10; 3.203 x IO-’ 1.923~10~’ 
1.564 x 10J 2.838 x 10’ 5.730x lo-’ 8.128 x 10-j 
1.034 X 10’ 1.875 x 10‘ 8.672~ 10 A 3.161 x 10 ’ 
2.544 x 10’ 4.614 x 10’ 3.524x 10 * 2.014x 10-j 
1.236 x IO9 2.242 X loq 7.251 X 10 I0 2.890 x 10~ ’ 
1.228 x 10” 2.227 x 10” 7.300 X lo--‘? 3.000 X lo-’ 
1.000 x lo’x 1.814x IO” 8.964x 10 ” 0.000 

Fig. 

2.4 r 

1.6 

I 
0 0.1 0.2 0.3 0.4 0.5 

x 

7. Comparison of film thicknesses from approximate 
and numerical solutions, 

boundary data at the plate is achieved, as indicated in 
the display of skin friction estimates in Fig. 10. 

The comparison of thermal characteristics appear 
in Figs. 1 l-13. In Fig. 11 the results for free surface 
temperature estimates are compared for a selection of 
Prandtl numbers (2,5 and IO), whilst Fig. 12 compares 
temperature distributions at downstream stations 
along the plate. Figure 13 once again displays excellent 
agreement in boundary data in the form of com- 
parisons of local heat transfer coefficients at various 
Prandtl numbers. 

9. CONCLUDING REMARKS 

An approximate and an exact numerical solution 
for the flow of a cold two-dimensional jet against a 
hot, horizontal plate have been presented. There is 

0.6 - 

0 0.2 0.4 0.6 0.8 1 

x 

Fig. 8. Comparison of free surface velocities from approxi- 
mate and numerical solutions. 

good overall agreement between the approximate and 
numerical solutions. The elements of engineering 
practice. namely the skin friction and heat transfer 
coefficients, show excellent agreement. Although at 
this stage a comparison between theory and exper- 
iment is unavailable, every indication is that the 
approximate solution may be carried over with con- 
fidence to the cylinder inundation problem, thus pro- 
viding a basis of comparison with Mitrovic’s exper- 
imental results. The work also provides the basis for 
re-assessing condensation drainage and inundation 
flows ; recognizing that in contrast to Nusselt theory, 
the inertia of the inundating film may generate sig- 
nificant heat transfer at the top of a flooded cylinder. 
In particular such an implementation of the present 
approximate method is likely to yield significant heat 
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Fig. 9. Comparison of velocity profiles at various stations. 
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Fig. 10. Comparison of skin friction estimates from approxi- 

mate and numerical solutions. 

(a)Pr=2 
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Fig. 11. Comparison of free surface temperatures from 
approximate and numerical solutions, 

transfer at the top of an inundated cylinder. This is in 
contrast to models based solely on a balance of viscous 
and gravitational terms, which necessarily predict zero 
heat transfer at the upper generator. 
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